
day20 factors

Due: Wednesday 10/4/23

Today's program uses a bunch of skills and commands we have already learned to do some new

things. Today's program will:

 Ask the user for a positive integer using the try/except structure. A positive integer is

greater than 0. Give one error message if the user enters a non-positive number and a

different error message if the user fails to enter a number of any kind.

 State if the number is odd or even. (use this: if num % 2 == 0:)

 Find the sum of all the integers from 1 to the number. For this you will use a for loop.

You literally did this on our for loop day (part 2). Look it up.

 Find all the factors of the number, store them in a list, then print the list. For example, the

factors of 6 are: 1, 2, 3, and 6. The factors of 7 are: 1 and 7. You can tell if one number is

a factor of another by using the modulo operator. For example, this line checks if x is a

factor of num:

if num % x == 0:

 Report if the number is prime or not. You'll use an if/else. A number is prime if it can

only be divided evenly by itself and 1 (for example, 7 is prime, 6 is not). An easy way to

tell if your number is prime is to see how long the list of factors is: if it is 2 numbers long,

your number is prime, otherwise, it is not prime. You can tell how long a list is using the

len() function.

 Ask if the user wants to run again.

 """Test your output with an odd number and with an even number. Also make sure you

test with a prime number. Include output showing at least these two tests and proper

output in triple quotes below your code."""

Notes:

If you have forgotten how to do the try/except thing, go look it up. You did this last week

multiple times. Read my tips up above.

To find the sum of the integers from 1 to the number, make a for loop using the range command

where x starts at 1 and goes up to your number (num+1), and then add each x to a sum variable

as you go up. To check your code, the sum of all integers up to and including 4 is 10 (1 + 2 + 3 +

4 = 10). You should create a variable before the for loop starts and put zero into it so that you

can add up all the numbers. (total = 0 outside of the loop, then inside the loop put total =

total + x).

 (continued on next page)

To find the factors of a number, create an empty list (factors = []) before your loop starts then

do a for loop using a range() call from 1 to the number+1 using a variable x, and use the %

operator with the number and each x. If there is no remainder (i.e. if num % x == 0), then x is a

factor, and you should add it to a list variable using append(). Then you can print the list of

factors out when the loop is done.

To find if a number if prime, check how many factors you have when you're done with the above

loop. If you have two factors then the number is prime. For example, for 7 as num, you'd end up

with a list containing [1,7], because no other integers divide evenly into 7, so just by the length

of the list (the "len()" function) you can tell if a number is prime. (If the list has only 2 entries,

your number is prime.)

Sample output:

Please enter a positive integer: 7

7 is odd.

The sum of all positive integers from 1 to 7 is 28

The factors of 7 are: [1, 7]

7 is prime.

Do another? (y/n) y

Please enter a positive integer: hi

> I am asking for a number, please try again.

Please enter a positive integer: -7

> The number must be positive, please try again.

Please enter a positive integer: 240

240 is even.

The sum of all positive integers from 1 to 240 is 28920

The factors of 240 are: [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48,

60, 80, 120, 240]

240 is not prime.

Do another? (y/n) n

Too bad, I was having fun.

The above output satisfies my testing requirements. In your sample output I need to see the

following:

 failing to enter a number

 entering a negative number,

 entering one odd number,

 entering one even number

 entering one prime number. In my example 7 is both odd and prime, which takes care of

two of the tests.

