day34 prime number finder

Due: Tuesday 11/2, 6th period Wednesday 11/3, 7th period

Your task is to write a program that finds and prints all the prime numbers between whatever two numbers the user enters. For example, if the user enters 3 and 11, your program will print the following:

```
We're going to find prime numbers.
Enter the first number: 3
Enter the last number: 11

3 5 7 11

4 prime numbers found between 3 and 11
```

Make sure your program actually checks the last number, as shown above. See that it checked and found that 11 was prime?

Requirements:

- Write a function called "prime" which does the checking. The function should return "True" if a number is prime, and "False" if the number is not prime.
- Print the prime numbers in 5 columns.
- Report how many prime numbers were found at the end.
- Use try/except structures to make sure the user enters two valid numbers for the start and the end values.
- Also add a check to make sure that the end value is larger than the start value.

Tips:

- 1. We have recently done programs where we figured out if a number is prime. You can find and use that code from before.
- 2. Because the function returns True or False, you can and should do an if statement where you check each number, like this:

```
if prime(n):
```

That's the same as saying "if prime(n) == True:".

See next page for sample runs

Sample run:

We're going to find prime numbers. Enter a starting value: 22 Enter an ending value: 2 The end value has to be higher than the start value.

Enter a starting value: 1
Enter an ending value: 300

2	3	5	7	11
13	17	19	23	29
31	37	41	43	47
53	59	61	67	71
73	79	83	89	97
101	103	107	109	113
127	131	137	139	149
151	157	163	167	173
179	181	191	193	197
199	211	223	227	229
233	239	241	251	257
263	269	271	277	281
283	293			

62 primes found between 1 and 300

Another sample:

We're going to find prime numbers. Enter a starting value: 1000 Enter an ending value: 1500

1009	1013	1019	1021	1031
1033	1039	1049	1051	1061
1063	1069	1087	1091	1093
1097	1103	1109	1117	1123
1129	1151	1153	1163	1171
1181	1187	1193	1201	1213
1217	1223	1229	1231	1237
1249	1259	1277	1279	1283
1289	1291	1297	1301	1303
1307	1319	1321	1327	1361
1367	1373	1381	1399	1409
1423	1427	1429	1433	1439
1447	1451	1453	1459	1471
1481	1483	1487	1489	1493
1499				

In my last example I added code to keep track of how long the whole run took. You can do that if you want. Add "import time" at the top, then before the main for loop say startTime = time.time(). Then after you print the summary message, say "endTime = time.time(). Then to see how many seconds the whole thing took, subtract **startTime** from **endtime**:

print(endTime-startTime, "seconds")

This is optional, I just wanted to share it.

71 primes found between 1000 and 1500 The process took 0.564054012298584 seconds.